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Average force and force-force correlation formulae both point to the same result that the 
mobility p of electrons injected into dense gases like Ar, Xe, CH, and C,H, ought to 
exhibit at least gross regularities with respect to changes in gas density n. This is the 
motivation for focussing here on the mobility minimum characterized by dp/dn = 0. At 
this minimum, a formula for pmin is obtained from which the scattering length a has been 
eliminated in favour of its density derivative (duJdn). This density derivative, it is argued, 
must have the form g,,,R,, where R, is a 'characteristic volume for transport' while a,,, is 
the scattering length in the dilute gas limit. The Onsager continuum model, plus the 
Bottcher-Onsager formula for the dielectricconstant, can be used as a first estimate ofQ,, 
which is shown to be proportional to the cube of the 'cavity radius' in this model. The 
formda for pmin is finally brought into direct contact with experiment. 

1 INTRODUCTION 

Many data are now available for the mobility p of electrons injected 
into insulating fluids such as argon,'-3 xenon,'p4 methane5 and ethane.6 
The general characteristics are remarkably similar at densities below 
that of the critical fluid; np depends weakly on fluid density n for small 
n, but then exhibits a minimum, which for xenon, say, is at n x 0.8nC, 
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270 G. R. FREEMAN AND N. H. MARCH 

with n, the critical d e n ~ i t y . ~  The theory of mobility has been discussed 
by a number of workers; we refer to papers by Lekner and B i ~ h o p , ~  and 
Basak and Cohen,* other references being given there. 

It is natural to assume that the mobility p can be described 
theoretically by the scattering wave function $ off a potential V(r) 
which is a sum of polarizable, localized, atomic-like potentials. Of 
course, the explicit calculation of $ from such a ‘disordered’ potential is 
of considerable complexity, except in the limit of truly weak scattering. 

Therefore in the present paper, we shall avoid the necessity for 
enquiring into the detailed form of $ by focussing on the minimum in 
the mobility-density curve. Then, with a number of admittedly simplis- 
tic assumptions, we show that the momentum transfer cross-section om, 
which we write following G e r j ~ o y ’ ~ ’ ~  as an average force, should have 
density scaling properties which can be utilized rather directly at the 
minimum of the mobility-density curve. 

2 MINIMUM OF MOBILITY-DENSITY CURVE 
RELATED TO AVERAGE FORCE 

As is customary, we write the mobility p as 

p = A[no,S(O)] - (2.1) 

w%ere om is the momentum transfer cross section and S(0)  the long 
wavelength limit of the fluid structure factor. Following Gerj~oy,’.’~ om 
can be written in terms of an average force F, which is the gradient of 
the potential V(r). With + denoting the wave function of the particle 
scattered from the potential V(r), the momentum transfer cross section 
for the particle of energy E is explicitly 

The Schrodinger equation which determines the scattered wave func- 
tion $ can be written in the equivalent integral equation form 

where Go is the free-particle Green function 

exp(ik1r - r’l) hZk2 
ir - r‘1 2m 

Go = : E = -  (2-4) 

where h is Planck’s constant divided by 271 and m is the particle mass. 
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MOBILITY-DENSITY CURVE 271 

The point we wish to exploit here is that, when we write the explicit 
form of V(r) as 

V(r) = c o ( r  - Ri) 
Ri 

(2.5) 

then the usual assumption that v is atomic-like (structure independent) 
links density derivatives, entering through the atomic positions R,, with 
spatial derivatives of V(r). 

At the state of the system corresponding to the mobility minimum, 
pmi,,, which is at a little higher density than the minimum of np  which is 
sometimes plotted, the mobility should be characterized fundamentally 
by V(r), its spatial derivatives and structural correlation functions. We 
now return to Eq. (2.1) to obtain a formula for pmin. This we shall then 
characterize, motivated by the above argument, by the density deriva- 
tive of the scattering length a, introduced conveniently through (T, = 
47ca’. Lumping the factor 41t into the constant in Eq. (2.1) we can then 
write, after differentiating p with respect to n and putting dp/dn = 0 at 
the mobility minimum: 

m 

where am is the molecular volume (nmin)-’. Returning to Eq. (2.1) we 
now eliminate the scattering length to obtain the mobility minimum in 
terms of the density derivative of the scattering length at the minimum, 

At this stage, we exploit what was said above about the density being 
a dominant gross variable, and write 

where asas is the scattering length in the dilute gas limit, essentially 
determined by the scattering properties of a single, polarizable atomic- 
like potential u(r) in Eq. (2.5). We shall refer to the volume R, in Eq. 
(2.8) as a ‘characteristic volume for transport’, or, if one wishes, R,?’3 
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272 G. R. FREEMAN AND N. H. MARCH 

can be defined as a characteristic length I , .  Returning 
have therefore 

to Eq. (2.7) we 

(2.9) 

To obtain a mobility minimum, the ratio on the left side of Eq. (2.9) 
must be less than unity, which in turn implies 

4Sm(O) er < [ 1 + - - -  d In S(O)]’ 
d l n n  , 

(2.10) 

As we shall see in the following section, the experimental value of the 
right-hand side of (2.10) is approximately two, and hence it follows that 
Q,/Q, 5 1.5. In the Appendix, it is shown in the special case of the 
continuum model that Q, is similar to the quantity ($nr3), where r is the 
cavity radius, since the static dielectric constant of the dense gas is 
& = 1.1-1.2. 

Our interpretation of a, defined through (daldn); = af$f is that it 
is reflecting a characteristic volume involving the injected electron 
correlating with a cluster of fluid molecules. In this same context, it is 
worth adding that it is known from microscopic theory that the density 
derivative of the fluid structure factor representing pair correlations is 
related to the three-molecule correlation function g3.11 In a final, fully 
microscopic theory which has yet to be given, it  is therefore already 
quite clear that multi-particle correlations will play an important role. 

Because of this complex situation, we have thought it worthwhile to 
illustrate the above very general argument, leading inevitably to Eq. 
(2.9), by the specific example of the Onsager continuum m ~ d e l . ’ ~ . ’ ~  
This is worked out in the Appendix where it is shown in this case that 
an equation having the form of Eq. (2.9) follows from the model, Q, 
being, naturally enough, proportional to the cube of the ‘cavity radius’ 
r in that model as already mentioned above. We prefer, however, to 
view formula (2.9) as the fundamental one to bring into contact with 
experiment, both in relation to the magnitude of the characteristic 
volume Q,, and its temperature dependence. This can be done in the 
general context of Q, reflecting directly electron-molecular cluster 
correlations and in no way requires any commitment to a continuum 
model. What the Appendix shows, however, is that such a model is 
contained, naturally enough, as a special case fitting within the frame- 
work leading to Eq. (2.9). 
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3.2 3.3 3.4 3.5 
IOVT, (K-1) 

Figure 1 Arrhenius plots of n p / T  for electrons in the dense gas soi~iewhat below the 
density of pmin. at temperatures near that of the vapor/liquid coexistence. The value of 
n/n, and the Ref. no. are given in brackets: Xe, 0 (0.50,4b); Ar, A (0.37. 3); CH,, 0 
(0.48. 5b); C,H,, 0 (0.50, 6). The lowest temperature in each case is that of the 
coexistence vapor. 

3 COMPARISON WITH EXPERIMENT 

It remains to bring Eq. (2.9) into contact with experiment. First of all, 
we note that P,,,~,, varies strongly with temperature. Using the result 
(2.2) with E replaced by the thermal energy k,T, it seemed natural from 
Eq. (2.1) to plot ln(np/T) against 1/T at a constant density near that of 
pmin. Data are not available precisely at pminr so the nearest lower 
density was chosen. This led to the results shown in Figure 1; the 
approximate Arrhenius temperature coefficients of p/T are listed in 
Table 1. The values of are relatively large and the behavior is quite 
general. The temperature coefficient of electron mobility in a dense gas 
near its vapor/liquid coexistence temperature increases with increasing 
density up to the critical. The values of the coefficient for different gases 
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Figure 2 Density dependence of the structure factor S(0)  in the coexistence vapor (0) 
and at a constant temperature 1.04 T, (a); ne and T, are the density and temperature of 
the critical fluid, respectively. Experimental data give the same curves for methane' 5n 
and the three isomers of pentane (n-pentane, 2-methylbutane and 2,2-dimethylpropane, 
Ref. 15b). The law ofcorresponding states is therefore valid and the curves apply also to 
xenon, argon and ethane. 

are similar at a given n/n,, independent of whether the molecules are 
polar or nonpolar, spherelike or non~pherelike.'~ 

We also estimated from available data the variation of the factor 
S(O)/[ 1 + {d In S(O)/d In n}]' at the densities of the mobilities in Figure 
1. This ratio for the somewhat higher density at pmin appears in Eqs 
(2.10) and (2.9). Relevant data'5 are shown in Figure 2 and listed in 
Table I. The ratio is nearly constant over the N 7 % increase of T of 
interest here, while the mobility increases rapidly. Since nmin is expected 
to be only a weak function of T,  it follows that n, must vary rather 
strongly with temperature. This might seem natural since 0, represents 
a 'correlation volume' of the injected electron with its environmental 
'molecular cluster'. On the other hand, in the Onsager continuum 
model this would predict that the cavity radius r should vary strongly 
with temperature. Baird, using a different method of analysis, con- 
cluded that r varied only weakly with temperature in the continuum 
f r a m e ~ o r k . ' ~ , ' ~  

The value of S(0) is much more sensitive to vapor density and 
temperature than is that of the ratio S(O)/[l + (d lnS(O)/dln n}]'. In the 
coexistence vapor the former incieases from 4.6 at n/n, = 0.37 to 260 at 
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276 G. R. FREEMAN AND N. H. MARCH 

n/n, = 0.80, while the latter increases only from 0.63 to 1.04 (Table 1). 
Our treatment is only approximate, but it encourages further investiga- 
tion of the implications of this ratio and R, for electron transport in 
dense gases. 

The apparent value of R, is similar to the average volume !2, 
occupied by a molecule in the dense gas, yet R, decreases with 
increasing temperature in a zone just above the vapor/liquid coexis- 
tence temperature. This is because nmin is large enough that collective 
interactions have begun to decrease the effective scattering cross section 
of the molecules in the hard gas ( T  $- T,n,,i,t,n,,). 

4 SUMMARY 

Taking the formula (2.1) as starting point, and representing the 
momentum transfer cross-section 6, by an average force,9 or equiva- 
lently a force-force correlation function," one is led to a definition via 
Eq. (2.8) of a 'characteristic volume for electron transport', R,, in terms 
of the density derivative of the scattering length at the minimum of the 
mobility-density plot, in units of the scattering length in the dilute gas. 
Equation (2.9) then follows, which relates the product nminpmin, in units 
of the Lorentz limit limn+o(np), to the ratio (R,/R,)z and the unper- 
turbed liquid structure. This, however, appears through a density 
derivative, which in turn involves a three molecule correlation function. 
The value of R,/!2,, representing the ratio of molecular volume to 
volume for transport, is -1 and has to be strongly temperature 
dependent if one is to fit pmin against T data. If the Onsager continuum 
model is employed, this would imply the cavity radius r, usually 
assumed independent of density at constant temperature, to vary with 
temperature. 
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Appendix Characteristic volume nt for electron 
transport, calculated in Onsager continuum 
model 

In Eq. (2.8) we have given a definition of a characteristic volume R, for 
electron transport in insulating fluids. Eventually of course, R, must be 
calculated from first principles, using Eqs (2.2), (2.3) and (2.5). This 
remains a problem of considerable complexity because of (i) the 
intrinsic disorder and (ii) the need for detailed knowledge of the local 
molecular environment of the injected electron. 

Therefore, it seemed of interest to illustrate Eq. (2.8) by using, in an 
approximate manner outlined below, the Qnsager continuum model. 
Within this model, we can adapt the recent discussion of the scattering 
length by Baird16 to bring it into contact with Eq. (2.8). 

Baird chooses to write the scattering length a itself in the form 

Q = agasfl(E9 U I )  (A l l  
where E is the fluid dielectric constant. This, as he points out, can be 
usefully approximated by the Bottcher-Onsager form. The variable u1 
in the continuum model is a/?, where a is the polarizability and r is the 
‘cavity radius’. Baird’s table contains the value u1 = 8.34 x lo-’ for Ar 
at  T = 298”K, and since this is substantially less than unity, we shall 
neglect it relative to unity in the formulae derived below. 

Though complete results are complicated, we can make contact with 
the formula (2.8) as follows: 

i) Form da/dn from Eq. (Al) as aga,(dfl/de)de/dn 
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278 G. R. FREEMAN A N D  N.  H. MARCH 

ii) Evaluate (afl/ae) at the place where f l  = 0. This does not 
correspond to the mobility minimum, but rather to its maximum at a 
higher density. However, Baird's table shows that a is almost linear in n 
over a substantial range, so that little error is thereby introduced. 

iii) Evaluate a&/& using the Bottcher-Onsager formula.' *,' 
As to step (i), one finds with u1 << 1 

Next we employ the Bottcher-Onsager formula, which can be written 

1 1 (2E - 2) 
( E  - 1)(2~  + 1) a r3 ( 2 ~  + 1) - ('43) 

12mn 

Assuming again u1 Q 1, this yields 

and hence it follows that 

(A51 
- agas12naE3 - 3ug,,(4nr3)&2 aa 

an u,1E[2E + l][E + 21 - [2E + l][E + 21 
- 

Comparison with Eq. (2.8) establishes the desired point that in the 
Onsager model the 'characteristic volume for transport' is proportional 
to the cavity radius cubed. 
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